Nilpotent adjacency matrices, random graphs and quantum random variables
نویسندگان
چکیده
منابع مشابه
Nilpotent Adjacency Matrices and Random Graphs
While powers of the adjacency matrix of a finite graph reveal information about walks on the graph, they fail to distinguish closed walks from cycles. Using elements of an appropriate commutative, nilpotentgenerated algebra, a “new” adjacency matrix can be associated with a random graph on n vertices and |E| edges of nonzero probability. Letting Xk denote the number of k-cycles occurring in a r...
متن کاملSpectral Distributions of Adjacency and Laplacian Matrices of Random Graphs
In this paper, we investigate the spectral properties of the adjacency and the Laplacian matrices of random graphs. We prove that (i) the law of large numbers for the spectral norms and the largest eigenvalues of the adjacency and the Laplacian matrices; (ii) under some further independent conditions, the normalized largest eigenvalues of the Laplacian matrices are dense in a compact interval a...
متن کاملSpectral Distributions of Adjacency and Laplacian Matrices of Random Graphs By
In this paper, we investigate the spectral properties of the adjacency and the Laplacian matrices of random graphs. We prove that: (i) the law of large numbers for the spectral norms and the largest eigenvalues of the adjacency and the Laplacian matrices; (ii) under some further independent conditions, the normalized largest eigenvalues of the Laplacian matrices are dense in a compact interval ...
متن کاملDistributions of Ratios: From Random Variables to Random Matrices
The ratio R of two random quantities is frequently encountered in probability and statistics. But while for unidimensional statistical variables the distribution of R can be computed relatively easily, for symmetric positive definite random matrices, this ratio can take various forms and its distribution, and even its definition, can offer many challenges. However, for the distribution of its d...
متن کاملRandom numbers and random matrices: Quantum chaos meets number theory
The statistical analysis of the eigenvalues of quantum systems has become an important tool in understanding the connections between classical and quantum physics. The statistical properties of the eigenvalues of a quantum system whose classical counterpart is integrable match those of random numbers. The eigenvalues of a chaotic classical system have statistical properties like those of the ei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2008
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8113/41/15/155205